\begin{align*} \frac{\partial \rho \boldsymbol{v}}{\partial t} =
-\nabla\cdot \boldsymbol{J}_{momentum} - \nabla p +
\rho \boldsymbol{g} \end{align*}
-
We've now determined the concentration and
“generation” terms, now on to the more complicated
flux terms.
-
As with the mass, the flux of momentum consists of a
convective
term and a
diffusive
term. \begin{align*} \boldsymbol{J}_{momentum} =
\boldsymbol{J}^{conv.}_{momentum} +
\boldsymbol{J}^{diff.}_{momentum} \end{align*}
-
The
convective
momentum flux is the flux of $B$ due to the bulk movement of the
fluid (analogous to the convective mass flux). \begin{align*}
\boldsymbol{J}^{conv.}_{momentum} =
\left(\rho \boldsymbol{v}\right)\boldsymbol{v} \end{align*}
Math Notes: Dyadic product
\begin{align*} \boldsymbol{a} \boldsymbol{b} = \begin{Bmatrix}
a_x b_x & a_x b_y & a_x b_z \\ a_y b_x & a_y b_y &
a_y b_z \\ a_z b_x & a_z b_y & a_z b_z \end{Bmatrix} =
a_i b_j \end{align*}